Wind Turbine Blade design

The ratio between the speed of the blade tips and the speed of the wind is called tip speed ratio. High efficiency 3-blade-turbines have tip speed/wind speed ratios of 6 to 7.

Modern wind turbines are designed to spin at varying speeds (a consequence of their generator design, see above). Use of aluminum and composite materials in their blades has contributed to low rotational inertia, which means that newer wind turbines can accelerate quickly if the winds pick up, keeping the tip speed ratio more nearly constant. Operating closer to their optimal tip speed ratio during energetic gusts of wind allows wind turbines to improve energy capture from sudden gusts that are typical in urban settings.

In contrast, older style wind turbines were designed with heavier steel blades, which have higher inertia, and rotated at speeds governed by the AC frequency of the power lines. The high inertia buffered the changes in rotation speed and thus made power output more stable.

The speed and torque at which a wind turbine rotates must be controlled for several reasons:

  • To optimize the aerodynamic efficiency of the rotor in light winds.
  • To keep the generator within its speed and torque limits.
  • To keep the rotor and hub within their centripetal force limits. The centripetal force from the spinning rotors increases as the square of the rotation speed, which makes this structure sensitive to overspeed.
  • To keep the rotor and tower within their strength limits. Because the power of the wind increases as the cube of the wind speed, turbines have to be built to survive much higher wind loads (such as gusts of wind) than those from which they can practically generate power. Since the blades generate more downwind force (and thus put far greater stress on the tower) when they are producing torque, most wind turbines have ways of reducing torque in high winds.
  • To enable maintenance; because it is dangerous to have people working on a wind turbine while it is active, it is sometimes necessary to bring a turbine to a full stop.
  • To reduce noise; As a rule of thumb, the noise from a wind turbine increases with the fifth power of the relative wind speed (as seen from the moving tip of the blades). In noise-sensitive environments, the tip speed can be limited to approximately 60 m/s (200 ft/s).

More and more engineers realized that the scale of the today's wind turbine blades is now rendering the early trial-and-error intuition-based approaches outdated. Predictive computer tools which are fundamentally founded on mechanics principles are needed to analyze the blade structure in the early design process. Recently, VABS originally developed in helicopter industry, is introduced as a rigorous, engineering-friendly approach for modeling realistic, composite rotor blades. VABS can easily save orders of magnitude computational cost without sacrificing the accuracy. An critical assessment of computer tools for calculating composite wind turbine blade properties has shown that VABS is the best tool available for modeling composite wind turbine blades among all the other tools available in the wind industry.

Using composites adds a significant level of complexity into the engineering of modern wind turbines. One has to simultaneously consider the heterogeneity and anisotropy of the material in the design and analysis. Such characteristics of composites will introduce new deformation modes such as extension-twist or twist-bending couplings defying the conventional blade analysis. VABS is the only computational tool which can rigorously capture all the deformation modes including elastic couplings due to use of composites.

Wind Turbine Blade count

The determination of the number of blades involves design considerations of aerodynamic efficiency, component costs, system reliability, and aesthetics. Noise emissions are affected by the location of the blades upwind or downwind of the tower and the speed of the rotor. Given that the noise emissions from the blades' trailing edges and tips vary by the 5th power of blade speed, a small increase in tip speed can make a large difference.

Wind turbines developed over the last 50 years have almost universally used either two or three blades. Aerodynamic efficiency increases with number of blades but with diminishing return. Increasing the number of blades from one to two yields a six percent increase in aerodynamic efficiency, whereas increasing the blade count from two to three yields only an additional three percent in efficiency. Further increasing the blade count yields minimal improvements in aerodynamic efficiency and sacrifices too much in blade stiffness as the blades become thinner.

Component costs that are affected by blade count are primarily for materials and manufacturing of the turbine rotor and drive train. Generally, the fewer the number of blades, the lower the material and manufacturing costs will be. In addition, the fewer the number of blades, the higher the rotational speed can be. This is because blade stiffness requirements to avoid interference with the tower limit how thin the blades can be manufactured, but only for upwind machines; deflection of blades in a downwind machine results in increased tower clearance. Fewer blades with higher rotational speeds reduce peak torques in the drive train, resulting in lower gearbox and generator costs.

System reliability is affected by blade count primarily through the dynamic loading of the rotor into the drive train and tower systems. While aligning the wind turbine to changes in wind direction (yawing), each blade experiences a cyclic load at its root end depending on blade position. This is true of one, two, three blades or more. However, these cyclic loads when combined together at the drive train shaft are symmetrically balanced for three blades, yielding smoother operation during turbine yaw. Turbines with one or two blades can use a pivoting teetered hub to also nearly eliminate the cyclic loads into the drive shaft and system during yawing.

Finally, aesthetics can be considered a factor in that some people find that the three-bladed rotor is more pleasing to look at than a one- or two-bladed rotor.

Wind Turbine Blade materials

New generation wind turbine designs are pushing power generation from the single megawatt range to upwards of 10 megawatts. The common trend of these larger capacity designs are larger and larger wind turbine blades. Covering a larger area effectively increases the tip-speed ratio of a turbine at a given wind speed, thus increasing the energy extraction capability of a turbine system.

Current production wind turbine blades are manufactured as large as 100 meters in diameter with prototypes in the range of 110 to 120 meters. In 2001, an estimated 50 million kilograms of fiberglass laminate were used in wind turbine blades. New materials and manufacturing methods provide the opportunity to improve wind turbine efficiency by allowing for larger, stronger blades.

One of the most important goals when designing larger blade systems is to keep blade weight under control. Since blade mass scales as the cube of the turbine radius, loading due to gravity becomes a constraining design factor for systems with larger blades.

Current manufacturing methods for blades in the 40 to 50 meter range involve various proven fiberglass composite fabrication techniques. Manufactures such as Nordex and GE Wind use an infusion process for blade manufacture. Other manufacturers use variations on this technique, some including carbon and wood with fiberglass in an epoxy matrix. Options also include prepreg fiberglass and vacuum-assisted resin transfer molding. Essentially each of these options are variations on the same theme: a glass-fiber reinforced polymer composite constructed through various means with differing complexity. Perhaps the largest issue with more simplistic, open-mold, wet systems are the emissions associated with the volatile organics released into the atmosphere. Preimpregnated materials and resin infusion techniques avoid the release of volatiles by containing all reaction gases. However, these contained processes have their own challenges, namely the production of thick laminates necessary for structural components becomes more difficult. As the preform resin permeability dictates the maximum laminate thickness, bleeding is required to eliminate voids and insure proper resin distribution. A unique solution to resin distribution is the use of a partially preimpregnated fiberglass. During evacuation, the dry fabric provides a path for airflow and, once heat and pressure are applied, resin may flow into the dry region resulting in a thoroughly impregnated laminate structure.

Epoxy-based composites are of greatest interest to wind turbine manufacturers because they deliver a key combination of environmental, production, and cost advantages over other resin systems. Epoxies also improve wind turbine blade composite manufacture by allowing for shorter cure cycles, increased durability, and improved surface finish. Prepreg operations further improve cost-effective operations by reducing processing cycles, and therefore manufacturing time, over wet lay-up systems. As turbine blades are approaching 60 meters and greater, infusion techniques are becoming more prevalent as the traditional resin transfer moulding injection time is too long as compared to the resin set-up time, thus limiting laminate thickness. Injection forces resin through a thicker ply stack, thus depositing the resin where in the laminate structure before gelatin occurs. Specialized epoxy resins have been developed to customize lifetimes and viscosity to tune resin performance in injection applications.

Carbon fiber-reinforced load-bearing spars have recently been identified as a cost-effective means for reducing weight and increasing stiffness. The use of carbon fibers in 60 meter turbine blades is estimated to result in a 38% reduction in total blade mass and a 14% decrease in cost as compared to a 100% fiberglass design. The use of carbon fibers has the added benefit of reducing the thickness of fiberglass laminate sections, further addressing the problems associated with resin wetting of thick lay-up sections. Wind turbine applications of carbon fiber may also benefit from the general trend of increasing use and decreasing cost of carbon fiber materials.

Smaller blades can be made from light metals such as aluminum. Wood and canvas sails were originally used on early windmills due to their low price, availability, and ease of manufacture. These materials, however, require frequent maintenance during their lifetime. Also, wood and canvas have a relatively high drag (low aerodynamic efficiency) as compared to the force they capture. For these reasons they have been mostly replaced by solid airfoils.